
An Argument for Open-Source Software in
Education – by David D. Thornburg, Ph.D.

Reduced technology budgets and the continuing high cost of
software have conspired to prevent meaningful penetration
of computers in America's schools. Thirty years ago, a few
schools started bringing early personal computers into the
classroom based on the idea that this new tool would allow
students to learn at their own pace, and acquire new skills.
In those early days, a simple computer cost about $2,500.
Since that time, computer use in schools has grown, and
the price of these systems dropped while the performance
steadily grew. Based on early growth rates, many expected
that it would only be a few years before every child had
meaningful access to computers in the classroom.
Furthermore, many assumed that this infusion of
technology would facilitate a transformation of educational
practice in ways that would benefit children in numerous
powerful ways.

Boy, was that wrong! Instead of computers becoming
commonplace, technology penetration bottomed out at a
student/computer ratio of about 4:1, a number that has
remained constant for the past five years. Instead of
reaching every child, the US average technology
penetration leaves 75% of our children behind. Outside the
classroom, we see a different story. Children increasingly
have powerful computers with broadband Internet access
at home. For many (but not all) children, they have better
access to the tools of our age at home than they do at
school. That said, the gap in home access is between the
“haves” and the “have nots” still exists. The digital divide
is very real.

Public education has a special obligation to empower every
child to learn to the best of her abilities. There is no longer
any question that powerful computers coupled to the
Internet can assist in this task. The question is how to
afford it. With the steady decline of federal money for
educational technology, and the constant pressure to
upgrade commercial software, it is a miracle that we have
the tools we do! But, in the final analysis, this is no excuse
for failing to meet our obligation to provide the resources
needed by every child in our schools.

One project that has shown what can be done to solve this
problem in Indiana's inACCESS program
(www.doe.state.in.us/inaccess) whose goal is to insure that
every high school student in the State has meaningful
access to technology. With more than 300,000 students in
Indiana high schools, creative solutions were required.
The approach taken in Indiana was to use powerful (but
inexpensive) computers running the Linux operating
system and using a lot of free open-source software
(FOSS), such as StarOffice, Firefox, etc. This decision has
the potential to reduce software costs from $100 per year
per computer to nearly zero. To get a sense of this impact,
consider a state with one million students. If you had
computers for every child, each running proprietary
software, you would still have to find $100 million per year
just to legally turn them on.

When this project started, Linux was largely relegated to
the back office as the operating system of choice for servers
and other computer systems out of sight of most teachers
and students. By boldly placing Linux on student
desktops, Indiana decided to push the envelope at just the
right time. Today's “desktop” Linux systems (e.g., versions
from Red Hat, Novell's SuSE, Ubuntu's Edubuntu, etc.)
provide desktops virtually indistinguishable from those
associated with computers running Windows or Macintosh
operating systems. Red Hat, in conjunction with MIT's
“one laptop per child” project also supports a completely
new user interface, Sugar, that provides a whole new way
for learners to interact with computers.

This is not to say that there aren't differences between
Linux and proprietary operating systems. Linux systems
typically boot up in a fraction of the time needed by a
“mature” version of Windows, and can also run amazingly

well on older computer hardware, thus extending computer
life in the classroom. On the downside, the popular
applications are different from (but largely compatible
with) their commercial counterparts. StarOffice replaces
Microsoft Office, GIMP replaces Photoshop, etc. Because
these programs are different, there is a learning curve to
be overcome as the transition is made from the commercial
to the FOSS version of the application, but typically this
learning step isn't much different from that associated

with moving from an older version of a commercial title to a
new one. In other words, if you've ever gone through an
upgrade cycle, you probably have all the skills you need to
master the new FOSS titles. For example, GIMP is
installed automatically with SuSE Linux (SLED) and
several other distributions (e.g., Ubuntu), meaning that
every Linux computer has a powerful graphics editor
already installed for free. The provides an opportunity for
teachers to let students make use of a tool whose
proprietary equivalent would cost a lot of money to
purchase. Opportunities for student creativity increase in
the world of FOSS since there is no financial barrier to
installing powerful special software on the off-chance that
some students might use it. My own software mix on my
Linux laptop would cost (at educational discounts) more
than $500 to replace with commercial titles. Again, the
cost savings per machine is significant. Add to this the fact
that many of these titles are cross-platform, and can be
given to students to take home, and the benefits of FOSS
grow even larger.

Going back to Linux,
consider the current push
by Microsoft to switch
users to Vista. To run
properly, this operating
system requires more
computer power than is
commonly found on
student desktops. This
means that current
Windows XP users will be
stretching the life of a
now-obsolete operating
system that Microsoft can
choose to stop supporting
whenever they wish. And,
even if schools decide to
equip all new computers
with Vista, they will still
be using XP on older
systems, meaning they will be supporting two operating
systems. In this case, the benefit of adding Linux to the
mix is increased. If you are supporting two operating
systems, and one of them lets you extend the life of existing
computers, the benefits to the school's budgets are tangible.

Indiana's push to Linux and FOSS may have been driven
by cost, but that is not the only factor. While cost is
important, it can't be the deciding factor: quality is
essential. If a free alternative is not as good, or better,
than a commercial product, then quality must win out over
price. We must never treat schoolchildren as second-class
citizens. We who care about education must always put
children first. Fortunately (as will be illustrated later), the
quality of many FOSS titles is amazing. Some of the titles
of greatest value in K-12 education have features not found
in any commercial titles – features that are of great value
to students.

If all I've said is true, why haven't schools throughout the

nation raced to embrace this approach? There are several
reasons, usually expressed as concerns about open-source
and Linux. I think these questions come from the fact that
FOSS represents a new paradigm. If we start showing
educators powerful ways to use technology that save
tremendous amounts of money, their natural instinct will
be to look for flaws. After all, if we can now do great things
for free, this might imply that we've been spending scarce
resources inappropriately in the past. To be fair (and to
put this idea to rest), it has only been within the past few
years that Linux could be considered as a desktop
operating system for anyone except strong technology
enthusiasts. But today we are truly in a new world. To
bring this world to fruition, we need to honestly address
people's concerns. Unless we do this, the true 1:1 computer
revolution in education will continue to be stalled. In the
following paragraphs I attempt to honestly address some of
the common questions that are raised when the topic of
FOSS and Linux is brought up among educators.

I've spent a
tremendous amount
of time and effort to
become certified in
other operating
systems, why should I
now go through this
process for Linux?

Certification is an
ongoing process. Every
time a new version of an
old operating system
hits the streets,
technology directors
have to get up to speed.
Fortunately, some of
the larger Linux
providers (e.g., Novell)
understand this need

and are addressing it. The reality is that, once Linux gets
into the classroom, most students scarcely know the
difference. Depending on how the desktop is configured,
applications launch and run the same as they always have.
The only difference that might be noticed is that older
computers now “run faster,” and there is no more “blue
screen of death” with which to contend.

If software is free, how can it be any good?
Most FOSS is written by people who intend to use it
themselves. For this reason, they want it to be as good as
possible. Some developers created programs to address
missing features in existing commercial titles – features
the commercial developer had no intention of adding. Also,
most popular FOSS titles are maintained by informal
teams scattered all over the world. Bugs get identified and
fixed quickly as a result.

If no one is getting paid, how is FOSS and Linux
maintained?
First, many software developers are getting paid for their
efforts. Some corporations who rely heavily on certain
FOSS titles provide time for their own employees to
maintain the software. This has direct benefit to the
company, as well as the global community of users. Also,
the maintainers of the software have their names included
in the source code, and many of them communicate with
each other on a regular basis. A lot of FOSS is developed at
Universities and government agencies (e.g., NASA), and
these developers are being paid for their efforts.

Who do you call when you need help?
There are two answers to this question. First, commercial
versions of Linux (e.g.,
Novell's SLED) charge an
annual service fee that
makes sure you have the
latest upgrades, and access
to a special help desk
where you can post
questions, report bugs, etc.
My experience has been
that many issues get
resolved within a day of
being reported.
Alternatively, specific
FOSS titles generally have
e-mail addresses for the
main developers who are
eager to hear from users
about any problems they
might be having, as well as
handling requests for new
features. Again, my experience is that bug fixes take about
a day, unless they involve a hardware conflict.

But if you ask this question about FOSS, you need to ask it
about commercial software as well. I can't think of a single
piece of commercial software for which I had a bug fix in a
day. Typically, I receive an e-mail stating “this is a known
problem that will be addressed in the next release.”

What if a critical application gets discontinued?
This is a powerful question given that many FOSS titles
are created because a small number of people wanted to
have the program. What if these folks decide to do
something else with their lives? The answer lies in the
“open-source” phrase. This means that the raw source code
for the software is open to anyone who wants it. You can (if
you wish) download the raw source code for any piece of
FOSS. You can add features, remove others, make your
own upgrades, or do anything you wish as long as you have
the requisite programming skills. Because FOSS is
generally a group effort, the source code is generally well
documented. This way, if a product is discontinued, you
can maintain it yourself as long as you wish.

Contrast this with commercial titles that go out of print.
There are some great educational titles from the 1980's
that are no longer available. Because the source code for
these programs is proprietary, there is no legal way for you
to upgrade or use these programs once they have been
taken off the market.

Why should I use Linux if it doesn't run the
applications I need?
There are some commercial titles that are so compelling
they deserve to have their own computers dedicated to
them. These titles may only run on one platform –
Windows, for example. In that case it might appear that
Linux users are out of luck. Furthermore, if these
programs are “mission critical” applications, then it would

seem that there is no
choice but to stay with a
proprietary operating
system.

Fortunately, there is a
commercial solution to
this problem called
Crossover Office
(www.codeweavers.com)
that allows many
Windows applications to
run under Linux. Because
the cost of this software is
significantly less than the
cost of Windows XP (for
example), this solution
can solve the problem.

In cases where this
approach doesn't work, schools need to adjust themselves
to having several operating systems available. For
example, every student computer could be running Linux,
and a few specialized computers running Windows or Mac
OS X (for high-end video production, perhaps) could be in a
special lab for those projects that need the special
software. This approach has several benefits. First the
specialized computers would only be running one or two
programs, thus keeping them “clean” from the mess that
can come from running numerous programs on a single
(non-Linux) computer.

Earlier in this brief, I suggested that, while cost is
undeniably a factor, the driving force must always be
quality. I have argued that, on this basis, FOSS running
on Linux can be a winning combination. The following
example describes a piece of math software that runs on all
platforms (Linux, Windows, Macintosh). This program is
typical of the kind of quality applications that are available
for free if you are willing to look for them. Rather than
provide a laundry list of great titles, I chose to look at just
one. But rest assured that there are many, many more
titles I could have chosen just as well.

http://www.codeweavers.com/

MathTrax
There are numerous examples of FOSS that perform as
well, or better, than their commercial counterparts. To
make the point that such products exist I will examine one
program written under the support of NASA: MathTrax
(http://prime.jsc.nasa.gov/mathtrax/).

At its core, MathTrax is a program for plotting and
exploring mathematical functions. The motivation behind
this software was meeting the needs of the visually
impaired learner, but the features it has makes it perfect
for all students.

This figure shows a polar plot of the function r=sin 3 .
I just typed in the equation, and MathTrax did the rest. In
addition to plotting the graph, MathTrax also created a text
description of the function. To my knowledge, this feature
of MathTrax is unique. Using the Math Description Engine
developed by NASA, the equation was analyzed and a plain
text description of the graph was generated automatically.
This feature is simply astounding. Furthermore, NASA
makes the Math Description Engine available to anyone
who wants to incorporate it into their non-commercial
software.

And, if that wasn't enough, the “Play” button at the lower
left of the screen plays a stereophonic musical tone that
changes as a cursor moves around the graph, letting
visually impaired students “hear” what various graphs
sound like.

To be honest, I can't imagine any student who wouldn't
benefit from this program. By representing mathematical
functions through graphs, text, and sounds, students have
multiple pathways to understanding not found elsewhere.

MathTrax is just one example of FOSS that should be used
by students throughout the country because if its quality,
not just because it is free. I could just as easily explored
other titles. They are easy to find. My main point is that

FOSS and Linux would make sense even if you had to pay
for them.

In fact, I think a good litmus test for any software or
operating system is simply this: Would I use this tool if I
had to pay for it myself? If the answer is “yes,” then you
have a great piece of software. If it is “no,” then the
software is no bargain, even if it is free.

Increasingly, Linux and a whole host of FOSS titles are
making it easier to say “yes,” and this means we are well
on the way to solving the access problem confronting most
schools in the United States today.

Indiana is paving the way in the United States, and there
is little question that the inACCESS project is a driving
force for bringing meaningful access to computers to the
hands of every student, for the first time in history.

Policy Notification Statement
It is the policy of the Indiana Department of Education
not to discriminate on the basis of race, color, religion,
sex, national origin, age, or disability, in its programs,
activities, or employment policies as required by the
Indiana Civil Rights Law (I.C. 22-9-1), Title VI and VII
(Civil Rights Act of 1964), the Equal Pay Act of 1973,
Title IX (Educational Amendments), Section 504
(Rehabilitation Act of 1973), and the Americans with
Disabilities Act (42 USCS ss 12101, et. Seq.).

Inquiries regarding compliance by the Indiana
Department of Education with Title IX and other civil
rights laws may be directed to the Human Resources
Director, Indiana Department of Education, Room 229,
State House, Indianapolis, IN 46204-2798, or by
telephone to 317-232-6610, or the Director of the Office
for Civil Rights, U.S. Department of Education, 111
North Canal Street, Suite 1053, Chicago, IL 60606-7204

Dr. Suellen Reed, State Superintendent
of Public Instruction.

For more information about Indiana ACCESS, visit::
www.doe.state.in.us/inaccess or call 317-232-6672

This publication is © 2007 David D. Thornburg and the
Indiana Department of Education

http://www.doe.state.in.us/inaccess

